03. First Interaction

First Interaction

First Interaction

Task Description:

Now that you’ve reviewed the Robot class, it’s time to interact with it. In this quiz, you will be asked to fill in the missing values and statements to simulate robot motion.

Task List:

Task Feedback:

Great work! Now run your code and verify it is functioning as expected.

Start Quiz:

//#include "src/matplotlibcpp.h"//Graph Library
#include <iostream>
#include <string>
#include <math.h>
#include <vector>
#include <stdexcept> // throw errors
#include <random> //C++ 11 Random Numbers

//namespace plt = matplotlibcpp;
using namespace std;

// Landmarks
double landmarks[8][2] = { { 20.0, 20.0 }, { 20.0, 80.0 }, { 20.0, 50.0 },
    { 50.0, 20.0 }, { 50.0, 80.0 }, { 80.0, 80.0 },
    { 80.0, 20.0 }, { 80.0, 50.0 } };

// Map size in meters
double world_size = 100.0;

// Random Generators
random_device rd;
mt19937 gen(rd());

// Global Functions
double mod(double first_term, double second_term);
double gen_real_random();

class Robot {
public:
    Robot()
    {
        // Constructor
        x = gen_real_random() * world_size; // robot's x coordinate
        y = gen_real_random() * world_size; // robot's y coordinate
        orient = gen_real_random() * 2.0 * M_PI; // robot's orientation

        forward_noise = 0.0; //noise of the forward movement
        turn_noise = 0.0; //noise of the turn
        sense_noise = 0.0; //noise of the sensing
    }

    void set(double new_x, double new_y, double new_orient)
    {
        // Set robot new position and orientation
        if (new_x < 0 || new_x >= world_size)
            throw std::invalid_argument("X coordinate out of bound");
        if (new_y < 0 || new_y >= world_size)
            throw std::invalid_argument("Y coordinate out of bound");
        if (new_orient < 0 || new_orient >= 2 * M_PI)
            throw std::invalid_argument("Orientation must be in [0..2pi]");

        x = new_x;
        y = new_y;
        orient = new_orient;
    }

    void set_noise(double new_forward_noise, double new_turn_noise, double new_sense_noise)
    {
        // Simulate noise, often useful in particle filters
        forward_noise = new_forward_noise;
        turn_noise = new_turn_noise;
        sense_noise = new_sense_noise;
    }

    vector<double> sense()
    {
        // Measure the distances from the robot toward the landmarks
        vector<double> z(sizeof(landmarks) / sizeof(landmarks[0]));
        double dist;

        for (int i = 0; i < sizeof(landmarks) / sizeof(landmarks[0]); i++) {
            dist = sqrt(pow((x - landmarks[i][0]), 2) + pow((y - landmarks[i][1]), 2));
            dist += gen_gauss_random(0.0, sense_noise);
            z[i] = dist;
        }
        return z;
    }

    Robot move(double turn, double forward)
    {
        if (forward < 0)
            throw std::invalid_argument("Robot cannot move backward");

        // turn, and add randomness to the turning command
        orient = orient + turn + gen_gauss_random(0.0, turn_noise);
        orient = mod(orient, 2 * M_PI);

        // move, and add randomness to the motion command
        double dist = forward + gen_gauss_random(0.0, forward_noise);
        x = x + (cos(orient) * dist);
        y = y + (sin(orient) * dist);

        // cyclic truncate
        x = mod(x, world_size);
        y = mod(y, world_size);

        // set particle
        Robot res;
        res.set(x, y, orient);
        res.set_noise(forward_noise, turn_noise, sense_noise);

        return res;
    }

    string show_pose()
    {
        // Returns the robot current position and orientation in a string format
        return "[x=" + to_string(x) + " y=" + to_string(y) + " orient=" + to_string(orient) + "]";
    }

    string read_sensors()
    {
        // Returns all the distances from the robot toward the landmarks
        vector<double> z = sense();
        string readings = "[";
        for (int i = 0; i < z.size(); i++) {
            readings += to_string(z[i]) + " ";
        }
        readings[readings.size() - 1] = ']';

        return readings;
    }

    double measurement_prob(vector<double> measurement)
    {
        // Calculates how likely a measurement should be
        double prob = 1.0;
        double dist;

        for (int i = 0; i < sizeof(landmarks) / sizeof(landmarks[0]); i++) {
            dist = sqrt(pow((x - landmarks[i][0]), 2) + pow((y - landmarks[i][1]), 2));
            prob *= gaussian(dist, sense_noise, measurement[i]);
        }

        return prob;
    }

    double x, y, orient; //robot poses
    double forward_noise, turn_noise, sense_noise; //robot noises

private:
    double gen_gauss_random(double mean, double variance)
    {
        // Gaussian random
        normal_distribution<double> gauss_dist(mean, variance);
        return gauss_dist(gen);
    }

    double gaussian(double mu, double sigma, double x)
    {
        // Probability of x for 1-dim Gaussian with mean mu and var. sigma
        return exp(-(pow((mu - x), 2)) / (pow(sigma, 2)) / 2.0) / sqrt(2.0 * M_PI * (pow(sigma, 2)));
    }
};

// Functions
double gen_real_random()
{
    // Generate real random between 0 and 1
    uniform_real_distribution<double> real_dist(0.0, 1.0); //Real
    return real_dist(gen);
}

double mod(double first_term, double second_term)
{
    // Compute the modulus
    return first_term - (second_term)*floor(first_term / (second_term));
}

double evaluation(Robot r, Robot p[], int n)
{
    //Calculate the mean error of the system
    double sum = 0.0;
    for (int i = 0; i < n; i++) {
        //the second part is because of world's cyclicity
        double dx = mod((p[i].x - r.x + (world_size / 2.0)), world_size) - (world_size / 2.0);
        double dy = mod((p[i].y - r.y + (world_size / 2.0)), world_size) - (world_size / 2.0);
        double err = sqrt(pow(dx, 2) + pow(dy, 2));
        sum += err;
    }
    return sum / n;
}
double max(double arr[], int n)
{
    // Identify the max element in an array
    double max = 0;
    for (int i = 0; i < n; i++) {
        if (arr[i] > max)
            max = arr[i];
    }
    return max;
}
/*
void visualization(int n, Robot robot, int step, Robot p[], Robot pr[])
{
	//Draw the robot, landmarks, particles and resampled particles on a graph
	
    //Graph Format
    plt::title("MCL, step " + to_string(step));
    plt::xlim(0, 100);
    plt::ylim(0, 100);

    //Draw particles in green
    for (int i = 0; i < n; i++) {
        plt::plot({ p[i].x }, { p[i].y }, "go");
    }

    //Draw resampled particles in yellow
    for (int i = 0; i < n; i++) {
        plt::plot({ pr[i].x }, { pr[i].y }, "yo");
    }

    //Draw landmarks in red
    for (int i = 0; i < sizeof(landmarks) / sizeof(landmarks[0]); i++) {
        plt::plot({ landmarks[i][0] }, { landmarks[i][1] }, "ro");
    }
    
    //Draw robot position in blue
    plt::plot({ robot.x }, { robot.y }, "bo");

	//Save the image and close the plot
    plt::save("./Images/Step" + to_string(step) + ".png");
    plt::clf();
}
*/

//####   DON'T MODIFY ANYTHING ABOVE HERE! ENTER CODE BELOW ####
int main()
{
    // Instantiating a robot object from the Robot class
    Robot myrobot;

    // TODO: Set robot new position to x=10.0, y=10.0 and orientation=0
    // Fill in the position and orientation values in myrobot.set() function
    myrobot.set();

    // Printing out the new robot position and orientation
    cout << myrobot.show_pose() << endl;

    // TODO: Rotate the robot by PI/2.0 and then move him forward by 10.0
    // Use M_PI for the pi value
    myrobot.move();

    // TODO: Print out the new robot position and orientation


    // Printing the distance from the robot toward the eight landmarks
    cout << myrobot.read_sensors() << endl;

    return 0;
}
//#include "src/matplotlibcpp.h"//Graph Library
#include <iostream>
#include <string>
#include <math.h>
#include <vector>
#include <stdexcept> // throw errors
#include <random> //C++ 11 Random Numbers

//namespace plt = matplotlibcpp;
using namespace std;

// Landmarks
double landmarks[8][2] = { { 20.0, 20.0 }, { 20.0, 80.0 }, { 20.0, 50.0 },
    { 50.0, 20.0 }, { 50.0, 80.0 }, { 80.0, 80.0 },
    { 80.0, 20.0 }, { 80.0, 50.0 } };

// Map size in meters
double world_size = 100.0;

// Random Generators
random_device rd;
mt19937 gen(rd());

// Global Functions
double mod(double first_term, double second_term);
double gen_real_random();

class Robot {
public:
    Robot()
    {
        // Constructor
        x = gen_real_random() * world_size; // robot's x coordinate
        y = gen_real_random() * world_size; // robot's y coordinate
        orient = gen_real_random() * 2.0 * M_PI; // robot's orientation

        forward_noise = 0.0; //noise of the forward movement
        turn_noise = 0.0; //noise of the turn
        sense_noise = 0.0; //noise of the sensing
    }

    void set(double new_x, double new_y, double new_orient)
    {
        // Set robot new position and orientation
        if (new_x < 0 || new_x >= world_size)
            throw std::invalid_argument("X coordinate out of bound");
        if (new_y < 0 || new_y >= world_size)
            throw std::invalid_argument("Y coordinate out of bound");
        if (new_orient < 0 || new_orient >= 2 * M_PI)
            throw std::invalid_argument("Orientation must be in [0..2pi]");

        x = new_x;
        y = new_y;
        orient = new_orient;
    }

    void set_noise(double new_forward_noise, double new_turn_noise, double new_sense_noise)
    {
        // Simulate noise, often useful in particle filters
        forward_noise = new_forward_noise;
        turn_noise = new_turn_noise;
        sense_noise = new_sense_noise;
    }

    vector<double> sense()
    {
        // Measure the distances from the robot toward the landmarks
        vector<double> z(sizeof(landmarks) / sizeof(landmarks[0]));
        double dist;

        for (int i = 0; i < sizeof(landmarks) / sizeof(landmarks[0]); i++) {
            dist = sqrt(pow((x - landmarks[i][0]), 2) + pow((y - landmarks[i][1]), 2));
            dist += gen_gauss_random(0.0, sense_noise);
            z[i] = dist;
        }
        return z;
    }

    Robot move(double turn, double forward)
    {
        if (forward < 0)
            throw std::invalid_argument("Robot cannot move backward");

        // turn, and add randomness to the turning command
        orient = orient + turn + gen_gauss_random(0.0, turn_noise);
        orient = mod(orient, 2 * M_PI);

        // move, and add randomness to the motion command
        double dist = forward + gen_gauss_random(0.0, forward_noise);
        x = x + (cos(orient) * dist);
        y = y + (sin(orient) * dist);

        // cyclic truncate
        x = mod(x, world_size);
        y = mod(y, world_size);

        // set particle
        Robot res;
        res.set(x, y, orient);
        res.set_noise(forward_noise, turn_noise, sense_noise);

        return res;
    }

    string show_pose()
    {
        // Returns the robot current position and orientation in a string format
        return "[x=" + to_string(x) + " y=" + to_string(y) + " orient=" + to_string(orient) + "]";
    }

    string read_sensors()
    {
        // Returns all the distances from the robot toward the landmarks
        vector<double> z = sense();
        string readings = "[";
        for (int i = 0; i < z.size(); i++) {
            readings += to_string(z[i]) + " ";
        }
        readings[readings.size() - 1] = ']';

        return readings;
    }

    double measurement_prob(vector<double> measurement)
    {
        // Calculates how likely a measurement should be
        double prob = 1.0;
        double dist;

        for (int i = 0; i < sizeof(landmarks) / sizeof(landmarks[0]); i++) {
            dist = sqrt(pow((x - landmarks[i][0]), 2) + pow((y - landmarks[i][1]), 2));
            prob *= gaussian(dist, sense_noise, measurement[i]);
        }

        return prob;
    }

    double x, y, orient; //robot poses
    double forward_noise, turn_noise, sense_noise; //robot noises

private:
    double gen_gauss_random(double mean, double variance)
    {
        // Gaussian random
        normal_distribution<double> gauss_dist(mean, variance);
        return gauss_dist(gen);
    }

    double gaussian(double mu, double sigma, double x)
    {
        // Probability of x for 1-dim Gaussian with mean mu and var. sigma
        return exp(-(pow((mu - x), 2)) / (pow(sigma, 2)) / 2.0) / sqrt(2.0 * M_PI * (pow(sigma, 2)));
    }
};

// Functions
double gen_real_random()
{
    // Generate real random between 0 and 1
    uniform_real_distribution<double> real_dist(0.0, 1.0); //Real
    return real_dist(gen);
}

double mod(double first_term, double second_term)
{
    // Compute the modulus
    return first_term - (second_term)*floor(first_term / (second_term));
}

double evaluation(Robot r, Robot p[], int n)
{
    //Calculate the mean error of the system
    double sum = 0.0;
    for (int i = 0; i < n; i++) {
        //the second part is because of world's cyclicity
        double dx = mod((p[i].x - r.x + (world_size / 2.0)), world_size) - (world_size / 2.0);
        double dy = mod((p[i].y - r.y + (world_size / 2.0)), world_size) - (world_size / 2.0);
        double err = sqrt(pow(dx, 2) + pow(dy, 2));
        sum += err;
    }
    return sum / n;
}
double max(double arr[], int n)
{
    // Identify the max element in an array
    double max = 0;
    for (int i = 0; i < n; i++) {
        if (arr[i] > max)
            max = arr[i];
    }
    return max;
}
/*
void visualization(int n, Robot robot, int step, Robot p[], Robot pr[])
{
	//Draw the robot, landmarks, particles and resampled particles on a graph
	
    //Graph Format
    plt::title("MCL, step " + to_string(step));
    plt::xlim(0, 100);
    plt::ylim(0, 100);

    //Draw particles in green
    for (int i = 0; i < n; i++) {
        plt::plot({ p[i].x }, { p[i].y }, "go");
    }

    //Draw resampled particles in yellow
    for (int i = 0; i < n; i++) {
        plt::plot({ pr[i].x }, { pr[i].y }, "yo");
    }

    //Draw landmarks in red
    for (int i = 0; i < sizeof(landmarks) / sizeof(landmarks[0]); i++) {
        plt::plot({ landmarks[i][0] }, { landmarks[i][1] }, "ro");
    }
    
    //Draw robot position in blue
    plt::plot({ robot.x }, { robot.y }, "bo");

	//Save the image and close the plot
    plt::save("./Images/Step" + to_string(step) + ".png");
    plt::clf();
}
*/

//####   DON'T MODIFY ANYTHING ABOVE HERE! ENTER CODE BELOW ####
int main()
{
    // Instantiating a robot object from the Robot class
    Robot myrobot;

    // Set robot new position to x=10.0, y=10.0 and orientation=0
    // Fill in the position and orientation values in myrobot.set() function
    myrobot.set(10.0, 10.0, 0);

    // Printing out the new robot position and orientation
    cout << myrobot.show_pose() << endl;

    // Rotate the robot by PI/2.0 and then move him forward by 10.0
    // Use M_PI for the pi value
    myrobot.move(M_PI / 2.0, 10.0);

    // Print out the new robot position and orientation
    cout << myrobot.show_pose() << endl;

    // Printing the distance from the robot toward the eight landmarks
    cout << myrobot.read_sensors() << endl;

    return 0;
}